Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction

Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpe...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Prediction of Viral Replication Origins Using Least-Squares Support Vector Machines

According to existing research, the replication origins (ORI) of certain viruses are located in DNA regions especially rich of repetitive sequences. Based on this observation, statistical methods for identifying likely sites of ORIs have been developed. In this presentation, some new relevant features, not associated with repetitive structures, are introduced. Then, Support Vector Machines (SVM...

متن کامل

Sparse least squares Support Vector Machine classifiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...

متن کامل

Sparse Least Squares Support Vector Machine Classiiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: INFORMS Journal on Computing

سال: 2010

ISSN: 1091-9856,1526-5528

DOI: 10.1287/ijoc.1090.0360